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Abstract— Traditional Space Time Adaptive Processing (STAP)
formulations cast the problem as a detection task which results
in an optimal decision statistic for a single target in colored
Gaussian noise. In the present work, inspired by recent theoret-
ical and algorithmic advances in the field known as compressed
sensing, we impose a Laplacian prior on the targets themselves
which encourages sparsity in the resulting reconstruction of the
angle/Doppler plane. By casting the problem in a Bayesian frame-
work, it becomes readily apparent that sparse regularization
can be applied as a post-processing step after the use of a
traditional STAP algorithm for clutter estimation. Simulation
results demonstrate that this approach allows closely spaced
targets to be more easily distinguished.

I. INTRODUCTION

In order to detect the comparatively weak returns from
moving targets, radar systems must suppress returns from the
ground and other structures, i.e., clutter, as well as thermal
noise in the receiver and active interference sources. White
noise in the receiver can only be addressed by increasing
the power aperture product of the system. Conversely, clutter
and jamming, collectively called interference, exhibit structure
that radars can exploit. Space Time Adaptive Processing
(STAP) represents the simultaneous adaptive application of
both Doppler filtering and spatial beamforming[1], [2].

By processing a group of pulses known as a coherent
processing interval (CPI) from multiple spatial channels, the
benefits of both Doppler filtering and beamforming can be
realized. In addition, STAP allows the suppression of inter-
ference which exhibits structure in the joint-space time do-
main that neither technique could individually address. While
much of the early work in STAP focused on the simplest
case of side-looking uniform linear arrays (ULAs) operating
monostatically, STAP techniques have also been applied to
bistatic systems, conformal arrays, space-based systems, and
other applications [3].

Recently, an increasing interest in compressed sensing[4],
[5], [6] along with a history of sparsity and randomization
techniques in radar [7] has compelled several authors to
consider applying CS ideas to moving target indication (MTI)
and STAP problems [8], [9], [10]. The core notion in CS
is to regularize a linear inverse problem by including prior
knowledge that the signal of interest is sparse. The signals
of interest in MTI are not sparse, because they contain large

high-energy clutter components that span a wide range in
angle/Doppler.

However, the targets of interest are sparse in the angle/-
Doppler plane, often occupying just a few cells. Existing
approaches have tried to address this dichotomy by recon-
structing the clutter as part of the target signal using various
ad hoc approaches to deal with the large amplitude clutter
components (see Section III). While this approach offers
potential gains in processing performance and will likely be
the subject of extensive future research, herein we propose a
simpler scheme exploiting sparseness of targets in STAP.

Specifically, casting the problem in a Bayesian framework
reveals that clutter whitening can first be accomplished using
any traditional STAP technique. Subsequently, sparse regular-
ization can be used to significantly improve the quality of the
target estimates. Simulation results demonstrate that the sparse
regularization approach can resolve closely spaced targets that
are difficult to distinguish using traditional STAP. All results
will be computed using clairvoyant clutter knowledge, since
the goal of this paper is to demonstrate the utility of sparse
regularization as a post-processing technique, rather than a
clutter estimation tool.

The paper is organized as follows: Section II describes the
signal model, Section III briefly reviews prior work, Section
IV describes the proposed approach, and Section V provides
some simulated examples. Finally, conclusions and directions
for further research are provided in Section VI.

II. SIGNAL MODEL

The techniques in this paper can be easily applied to
conformal arrays, bistatic geometries, and other problems of
interest. For ease of exposition, the development will be
restricted to a monostatic ULA. Consider a ULA consisting of
J channels spaced equally at d meters apart. A CPI for this
system will consist of data collected over K slow time pulses
with a sampling period of T seconds and L fast time range
bins1. We shall assume that the system is narrowband, i.e., the

1Slow time refers to the relatively long intervals between successive pulses
from a coherent radar. Fast time refers to the time scale at which the
electromagnetic pulse travels across the scene of interest, which is the same
as range up to a scale factor.
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bandwidth B << fc, where fc = c
λ is the center frequency2

and that pulse compression has already been performed. In
addition, target motion during a given pulse will be neglected3.

Often, a CPI of radar data is organized into a data cube,
where the three dimensions are channels, pulses, and fast time.
Since our goal is to highlight the underlying linear problem
and the applicability of a CS approach, we will immediately
consider space-time snapshots, i.e., the vectorization of the
2D data cube slice at a particular range. Specifically, the data
for pulse k at range l will be denoted as yk,l ∈ CJ , while
the space-time snapshot at range l will be denoted yl ∈ CJK
where the data has been organized pulse-wise, i.e.,

yl =
[
yT1,l yT2,l . . . yTK,l

]T
.

The data matrix containing the complete set of complex
samples for the entire CPI is then given as Y ∈ CJK×L,
where

Y =
[
y1 y2 . . . yL

]
.

At a given range, the response of the array over the CPI to
a point target can be characterized with a space-time steering
vector. First, consider the response of the J spatial channels
to a target response arriving at elevation angle θ and azimuth
angle φ. Since the array is linear in the azimuth plane, there
is a conical ambiguity in the arrival direction of a given signal
characterized by the cone angle θc = cos−1 (cos θ sinφ). The
spatial frequency observed by the array for a given cone angle
is then

fs =
d

λ
cos θc.

The spatial steering vector for a given cone angle is then as ∈
CJ given by

as(fs) =
[

1 exp(j2πfs) . . . exp(j2π(J − 1)fs)
]T
,

where we have selected the first element as the zero-phase
reference for the array. Similarly, we can define the normalized
Doppler frequency as

fd =
2vT
λ
,

where v is the velocity of the target. The temporal steering
vector describing the response of a single element across K
time samples to a target at normalized Doppler fd is then given
as the length K vector

at(fd) =
[

1 exp(j2πfd) . . . exp(j2π(K − 1)fd)
]T
.

The combined space time steering vector for a target is then
given as the Kronecker product of the temporal and spatial
steering vectors, i.e.,

a(fs, fd) = at(fd)⊗ as(fs).

2This assumption allows time delays to be well approximated as phase
shifts, which creates a correspondence between target velocity and the output
bins of an FFT with respect to slow time.

3This so called stop-and-hop approximation is very reasonable for the short
pulses associated with MTI platforms [11].

Let us discretize the frequency variables into Ns ≥ J spatial
frequency bins and Nd ≥ K Doppler frequency bins spaced
uniformly across the allowed ranges for each variable to obtain
N = NsNd unique steering vectors. We can organize the re-
sulting steering vectors into a matrix A ∈ CJK×N . Neglecting
range ambiguities, we can define the scene reflectivity as a
function of fs and fd at a given range as xl ∈ CN . We then
obtain the linear relationship between the collected data and
the scene of interest as

yl = Axl + ql

Y = AX +Q,

where X ∈ CN×L is the collection of the L scene vectors
{xl}. We have used ql to denote the noise plus interference in
the lth range bin, and Q to represent the matrix of these dis-
turbances. Throughout the remainder of the paper our results
will focus on analyzing only a single range bin with known
clutter statistics. Straddling losses caused by discretization,
along with array calibration errors and other similar effects,
can be captured by including an unknown perturbation in
the matrix A. Preliminary theoretical results suggest that CS
approaches are to some extent robust against these modeling
errors [12], [13].

III. PRIOR WORK

A. Sparse Regularization

A distinction should be made between compressed sensing
(CS), which specifically involves random matrices and perfor-
mance guarantees based on the restricted isometry property
(RIP), mutual coherence, or similar notions [14] and sparse
regularization, which simply includes a sparsity-inducing reg-
ularization term. The two are closely related and utilize many
of the same tools. In particular, both often lead to problem
formulations that require the solution of the so called Basis
Pursuit Denoising (BPDN) problem which takes the form

arg min
x

‖Ax− y‖22 + λ ‖x‖1 ,

where ‖x‖1 is the `1 or “taxicab” norm, given by the sum of
the absolute values of the elements of the vector x.

Omitting details beyond the scope of this paper, this for-
mulation is selected because it is represents a convex re-
laxation [15] of the problem of enforcing maximal sparsity
on the signal x, which is an NP-hard problem. While this
problem can be cast as a second order cone program and
solved with interior point methods [4], this approach is often
computationally intractable for large scale problems like those
encountered in radar. A variety of algorithms have been
proposed to attack this and similar problems including gradient
based methods [16], [17], [18], [19], greedy methods [20],
[21], [22], and re-reweighting approaches that solve a sequence
of `2 problems to approximate `1 minimization [23].
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B. Applications to STAP

At the time of this publication, the authors are only aware
of three references describing the application of sparse reg-
ularization to STAP. The first of these papers [9] addresses
the problem of clutter by applying a mask to the signal in
the angle/Doppler domain before penalizing. Specifically, they
minimize

J(x) = ‖y −Ax‖22 + λ ‖Mx‖1 ,

where M is a mask that zeroes out the components of the
signal that correspond to the clutter ridge. Given knowledge
of the clutter ridge location, this technique is shown to
outperform the sample matrix inverse (SMI). The results use
the convex optimization algorithm known as FISTA [17].

The second paper [10] does not deal with the clutter ridge
through optimization of a modified cost function. Instead of
masking off the clutter ridge, the entire scene is reconstructed
using a CS approach, and then an attempt is made to identify
and zero out the clutter component. Three algorithms are
presented that carry out this procedure, including variants
that attempt to exploit available training data. The paper
avoids using prior knowledge of the clutter ridge location
at the expense of requiring the signal to be sparse in the
angle/Doppler domain with the clutter included. The final
paper [8] similarly attempts to reconstruct the clutter and target
signals together.

This paper offers a formulation in a Bayesian framework us-
ing simple priors that allows sparse reconstruction algorithms
to be leveraged in concert with existing STAP algorithms
to improve reconstruction quality. The algorithm relies on a
traditional STAP algorithm for clutter whitening, which differs
from the single snapshot approaches cited above.

IV. SPARSE REGULARIZATION POST-PROCESSING

To cast the estimation of xl in a Bayesian framework, we
must adopt priors on the signal and disturbance. First, we will
adopt a Laplacian prior on the unknown signal xl and assume
that the noise ql is circular Gaussian with known covariance
Σl, i.e.,

ql ∼ CN (0,Σl)

p(xl) ∝ exp
{
−λ

2
‖xl‖1

}
,

where the normalization constant on p(xl) is omitted for
simplicity. We can then find the MAP (maximum a posteriori)
estimate easily as

x̂l = arg max
x

p(x|yl)

= arg max
x

p(yl|x)p(x)
p(y)

= arg max
x

p(yl|x)p(x)

= arg max
x

exp
{
−1

2
‖Ax− yl‖2Σl

}
exp

{
−λ

2
‖x‖1

}
= arg min

x
‖Ax− yl‖2Σl

+ λ ‖x‖1 ,

Fig. 1. NMF test statistic results for one clutter realization. The two pairs
of closely spaced targets are blurred together. The results are provided on
a normalized dB scale, and the true target positions are marked with blue
circles.

where ‖x‖2Σl
= xHΣ−1

l x. The resulting optimization problem
is precisely what we would expect given the colored Gaussian
noise prior. Since Σl is a covariance matrix, and hence positive
definite and symmetric, the problem is convex and solvable
with a variety of techniques. In fact, we can factor the inverse
of the covariance using the Cholesky decomposition as Σ−1 =
RHR to obtain

x̂l = arg min
x

‖Ax− yl‖2Σl
+ λ ‖x‖1

= arg min
x

‖RAx−Ryl‖22 + λ ‖x‖1

= arg min
x

∥∥Āx− ȳl∥∥2

2
+ λ ‖x‖1 , (1)

where Ā = RA and ȳl = Ryl. With this transformation, the
problem is now in the standard BPDN form and can be solved
using any of the approaches referenced in Section III.

This simple calculation resulting in Eqn (1) is very il-
luminating. After whitening the clutter using any standard
STAP algorithm, a sparse regularization post-procesing step
can be applied to capitalize on the sparsity of targets in most
MTI scenarios. This post-processing can significantly improve
the quality of the output reconstruction without requiring
modification to the clutter covariance estimation technique.

V. SIMULATION RESULTS

An airborne, side-looking L-band radar platform with an
J = 8 channel ULA was simulated using the SMS-MBS
software package [24]. A CPI of K = 32 pulses was processed
using clairvoyant knowledge of the clutter covariance matrix.
Two pairs of targets were placed near the clutter ridge near the
pointing angle of the transmit beam. One pair has the same
normalized Doppler frequency, while the other shares the same
normalized spatial frequency.

The results in Figure 1 show the performance of the nor-
malized matched filter (NMF). This test statistic is calculated

978-1-4244-5813-4/10/$26.00 ©2010 IEEE 001473



Fig. 2. Reconstruction using FISTA for sparse regularization post-procesisng
for one clutter realization. Both pairs of closely spaced targets are now clearly
resolved. The results are provided on a normalized dB scale, and the true target
positions are marked with blue circles.
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Fig. 3. The black stars mark the true target locations. The clusters of colored
circles represent the four strongest local maxima in the FISTA reconstruction
for each of 100 clutter realizations. The target clusters are well separated,
although some bias in location estimation is observed.

as

x̂NMF (fs, fd) =
|a(fs, fd)HΣ−1y|2

(a(fs, fd)HΣ−1a(fs, fd))(yHΣ−1y)
,

which represents matched filtering after optimal clutter whiten-
ing. The denominator is included to provide the constant
false alarm rate (CFAR) property [25]. While x̂NMF is the
optimal test statistic for a single target, the resulting image
blurs together each pair of closely spaced targets. Local peak
detection demonstrates that only a single local maximum
appears at the location of each target pair.

In contrast, the result using the proposed approach shown
in Figure 2 clearly separates the targets and provides a
cleaner image, requiring no further processing. The estimated
locations of the targets are somewhat biased in the angle/-
Doppler plane, but two targets in approximately the correct
configuration are still detected in each pair.

To assess the variance and bias of the target location

estimates in the angle/Doppler plane, a series of 100 trials
were conducted with random realizations of the disturbance
signal. Figure 3 plots the four largest local maxima from the
reconstruction for each realization. The clusters of estimated
target locations are well separated. The bias in the estimate
of the lower Doppler frequency target in the pair arriving at
fs = −0.234 is likely due to a combination of the proximity
to the clutter ridge and interference effects between the two
targets.

The regularization parameter λ was chosen in an ad hoc
manner for this simple test. As suggested in [9], the FISTA
algorithm was used to solve Eqn (1) to take advantage of its
simplicity and guaranteed quadratic rate of convergence. As
an aside, the FISTA algorithm is a majorization-minimization
approach with close ties to the algorithm proposed in [18].

VI. CONCLUSION

The plethora of recent developments in compressed sensing
offers a variety of algorithms for solving the BPDN problem.
The present work casts the STAP problem in a Bayesian
framework with a Laplacian prior on the target reflectivity
as a function of angle and Doppler. This formulation al-
lows sparse regularization to be applied as a post-procesing
step after clutter whitening using any standard STAP tech-
nique. The provided simulation results demonstrate that the
proposed approach can significantly enhance the quality of
angle/Doppler reconstructions. In particular, the resolvability
of closely spaced targets is enhanced, even compared to the
optimal single target STAP processor with clairvoyant clutter
knowledge. Future work will include extending this Bayesian
framework to handle other clutter and target priors and incor-
porating simultaneous estimation of the clutter statistics into
the proposed sparse regularization scheme.
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